MATH 2230 Complex Variables with Applications (2014-2015, Term 1)

 Solution and Remarks to Midterm 1

 Solution and Remarks to Midterm 1}

1. (1) ab
(2) c
(3) c
(4) acd
(5) acd
(6) ab

Remark:
For single choice questions, you will obtain marks only when you choose the correct answer.
For multiple choice questions, there are three cases:
(1) You will obtain full marks when you choose all correct answers.
(2) You will obtain part of the scores when you choose only some of the correct answers.
For question 1 and 6 , you will be marked 2 points when you choose one correct answer.
For question 4 and 5 , you will be marked 1 point or 3 points respectively when you choose one or two correct answers.
(3) You will be marked 0 whenever you choose one incorrect answer.
2. Solution:

$$
R(z)=\frac{z^{5}}{\left(z^{2}+1\right)^{2}}=z+\frac{-2 z^{3}-z}{z^{4}+2 z^{2}+1}
$$

Let

$$
\frac{-2 z^{3}-z}{\left(z^{2}+1\right)^{2}}=\frac{A}{z+i}+\frac{B}{z-i}+\frac{C}{(z+i)^{2}}+\frac{D}{(z-i)^{2}}
$$

Then

$$
\frac{-2 z^{3}-z}{\left(z^{2}+1\right)^{2}}=\frac{A(z-i)^{2}(z+i)+B(z+i)^{2}(z-i)+C(z-i)^{2}+D(z+i)^{2}}{\left(z^{2}+1\right)^{2}}
$$

$\frac{-2 z^{3}-z}{\left(z^{2}+1\right)^{2}}=\frac{A\left(z^{3}-i z^{2}+z-i\right)+B\left(z^{3}+i z^{2}+z+i\right)+C\left(z^{2}-2 i z-1\right)+D\left(z^{2}+2 i z-1\right)}{\left(z^{2}+1\right)^{2}}$

$$
\left\{\begin{array}{l}
A+B=-2 \\
-i A+i B+C+D=0 \\
A+B-2 i C+2 i D=-1 \\
-A i+B i-C-D=0
\end{array}\right.
$$

Thus, $A=-1, B=-1, C=\frac{i}{4}, D=-\frac{i}{4}$.
Therefore,

$$
R(z)=z-\frac{1}{z+i}-\frac{1}{z-i}+\frac{i}{4(z+i)^{2}}-\frac{i}{4(z-i)^{2}}
$$

Remark:If you have the correct method but some mistakes in computation, I will only deduct a few points.
3. Solution: Suppose $v(x, y)$ is a harmonic conjugate of u. Then

$$
\begin{aligned}
& u_{x}=v_{y}=-\sin x \cosh y \\
& u_{y}=-v_{x}=\cos x \sinh y
\end{aligned}
$$

By the first equation, we have $v(x, y)=-\sin x \sinh y+C(x)$, where $C(x)$ is a function of x.
Then $v_{x}=-\cos x \sinh y+C^{\prime}(x)=-\cos x \sinh y$ (by the second equation)
Thus, $C(x)=C$, where C is a constant.
Therefore,

$$
v(x, y)=-\sin x \sinh y+C
$$

where C is a constant
Noted that the two functions u and v are harmonic in \mathbb{C} and their first-order partial derivatives satisfy the Cauchy-Riemann equations

$$
u_{x}=v_{y}, u_{y}=-v_{x}
$$

throughout \mathbb{C}.
Thus v is indeed a harmonic conjugate of u.
The derivative of $u+i v$ is

$$
u_{x}+i v_{x}=-\sin x \cosh y-i \cos x \sinh y
$$

Remark: Finding v values 20 points and calculating the derivative of $u+i v$ values 5 points.
If you have the correct method but some mistakes in computation, I will only deduct a few points.
4. Solution:
(a) Suppose the center of the circle C is $a=x+i y$.

Then we have

$$
\begin{gathered}
6=a+\frac{4^{2}}{\overline{0}-\bar{a}} \\
6=x+i y-\frac{16}{x-i y}
\end{gathered}
$$

We get $y=0, x=-2$ or $x=8$.
Thus, the collection of the circle C are

$$
|z+2|=4
$$

and

$$
|z-8|=4
$$

(b) Obviously, C_{1} is $|z+2|=4$.

Since $(0, \infty)$ is a symmetric pair of the circle $|z|=1$, we have $(0, T \infty)$ is a symmetric pair of C_{1}.
Then

$$
T \infty=-2+\frac{4^{2}}{\overline{0}-\overline{-2}}=6
$$

Thus,

$$
\begin{aligned}
(z, 0,1, \infty) & =(T(z), 0,2,6) \\
T(z) & =\frac{6 z}{2+z}
\end{aligned}
$$

(c) Noted that 0 is a point in the interior of $|z|=1$ and $T(0)$ is also in the interior of C_{1}.
Thus, the exterior of $|z|=1$ is mapped to the exterior of C_{1}.

